### Factor Analysis¶

The generative model for factor analysis assumes that the data was produced in three stages:

1. Pick values independently for some hidden factors that have Gaussian priors.
2. Linearly combine the factors using a factor loading matrix. Use more linear combinations than factors.
3. Add Gaussian noise that is different for each input.
In [12]:
%matplotlib inline
from matplotlib import rc
rc("font", family="serif", size=16)
rc("text", usetex=True)
import daft
def plot_FA():
pgm = daft.PGM([6.3, 4.05], origin=[-1., -0.3], aspect=1.)
pgm.add_node(daft.Node("x1", r"$x_1$", 1.5, 1, observed=True))
pgm.add_node(daft.Node("x2", r"$x_2$", 2.5, 1, observed=True))
pgm.add_node(daft.Node("x3", r"$x_3$", 3.5, 1, observed=True))

pgm.add_node(daft.Node("z1", r"$z_1$", 2., 2.2))
pgm.add_node(daft.Node("z2", r"$z_2$", 3, 2.2))

pgm.render()


In [13]:
plot_FA()

• observation: $\vec x$
• latent factors: $\vec z$
• factor loading matrix $W$
• diagonal matrix $\Psi$

Generative Model: $$\vec x = W \vec z + \vec u$$

$$\vec z \sim \mathcal N(0,\mathbb{1})$$$$\vec u \sim \mathcal N(0,\Psi)$$

$\vec x$ is distributed with zero mean and covariance $W W^T + \Psi$.

The goal of factor analysis is to find the matricies $W$ and $\Psi$ that best explain the covariance structure of all observations $\vec x$.

Note:

• $\rm{dim}(\vec z) < \rm{dim} (\vec x)$
• diagonality of $\Psi$ is one of the key assumptions of factor analysis