Praktische Grundlagen der Informatik
Algorithmen und Datenstrukturen
Übersicht Data Science:
Data Science / Machine Learning
Projekt: Deep Teaching
Alte Veranstaltungen:
Grundlagen der Informatik (NF)
Octave/Matlab Tutorial
Game Physik
Home
Lehre
Publikationen
Kontakt/Impressum
Bayesian Data Analysis with PyMc
¶
Frequentist approach to learning:
Maximum Likelihood principle
Maximum Likelihood for regression and classification
Introduction into Bayesian Inference with PyMc
(Binominal and Beta distribution)
Bayesian Data Analysis
Categorical data / Multinomial distribution / Dirichlet Prior
MCMC Sampling
Applications, Examples:
A/B Testing
Global Warming
Bayesian Model Comparision: Sturmschäden
Bundesliga Preditor
(Poisson Distribution)
Topic Models
(Latent Dirichlet Allocation)